Question Bank for PG Course

অঙ্ক (Mathematics)

নবম (খ ১) পত্র (Paper - IXB(i)) Topological Group : PGMT-IXB(i) (OLD SYLLABUS)

- 1. Let *P* be an open set in topological group *G* and *A* be any subset of *G*. Then which of the followings is/are true?
 - (i) uP, Pu are open set in G for any member $u \in G$
 - (ii) AP and PA are open sets in G
 - (iii) P A is a closed set in G
- 2. Which of the followings is/are true?
 - (i) The circle group is homeomorphic with the unite circle in \mathbb{C} .
 - (ii) If G be a locally compact Hausdorff abelian topological group, then its dual group G^* is also a similar topological group
 - (iii) Let G be a topological group then G^* be a topological group.
- 3. Let *F* be a closed set and *C* be a compact set in a topological group. Which of the followings is/are true?
 - (i) FC is a closed set
 - (ii) CF is a closed set
 - (iii) CF or FC may not closed.
- 4. Fill in the blank.
 - A topological group that is Hausdorff is
 - (i) completely regular
 - (ii) regular
 - (iii) T_1
- 5. Which of the followings is/are true?
 - (i) Let *H* be a sub-group of a topological group *G*, then its closure \overline{H} is so.
 - (ii) A sub-group *H* of a topological group *G* is open iff its interior $int(H) \neq \emptyset$.
 - (iii) A sub-group *H* of a topological group *G* is open iff its interior $int(H) = \emptyset$.
- 6. Fill in the blank.
 - The centre of a Hausdorff topological group is a Normal sub-group.
 - (i) open
 - (ii) closed
 - (iii) may not be closed
- 7. Which of the followings is/are true?
 - (i) $M_n(\mathbb{R})$ is Hausdorff topological group that is compact
 - (ii) $M_n(\mathbb{R})$ is Hausdorff topological group that is not compact
 - (iii) $M_n(\mathbb{R})$ is Hausdorff topological group that is locally compact
 - (iv) $M_n(\mathbb{R})$ is Hausdorff topological group that is not locally compact
- 8. Which of the followings is/are true?
 - (i) $G_n(\mathbb{R})$ is an open set in topological group $M_n(\mathbb{R})$.
 - (ii) $G_n(\mathbb{R})$ is an closed set in topological group $M_n(\mathbb{R})$.
 - (iii) $O_n(\mathbb{R})$ is a compact topological sub group of $G_n(\mathbb{R})$.

- 9. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in a Banach Algebra X. Is the sequence $\{x_ny_n\}$ Cauchy?
- 10. Let f be a complex homomorphism on a Banach Algebra X and $x \in X$ with $||x|| \neq 1$. Then find f(x).
- 11. Let X be a Banach Algebra with identity. Is the set of all invertible elements of X open or closed?
- 12. Is multiplication operator in a Banach Algebra continuous?
- 13. Let M be a maximal ideal in a commutative Banach Algebra X with identity *e*. Find the value of e(M).
- 14. Let M be a maximal ideal in a commutative Banach Algebra X with identity. Is X/M a Banach Algebra?
- 15. Which of the following statement is always true about an ideal *I* of the commutative Banach Algebra X
 - 1. For any $x \in X$, x belongs to I
 - 2. Identity *e* of X belongs to *I*
 - 3. For any $x \in X$ and $y \in I$, then $xy \in I$